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Abstract This paper presents the flutter derivatives extracted from a stochastic
state-space system identification method under difference turbulent flows. The aim
of the study is to clarify the effects of oncoming turbulence on the flutter of
suspended long-span bridges by using section model wind tunnel test. Several wind
tunnel tests on a trussed deck section have been carried out with different oncoming
turbulent properties involving turbulence intensities and turbulent scales. The
analysis includes the transient response data from wind tunnel test which have been
analyzed by the system identification technique in extracting flutter derivatives
(FDs) and the difficulties involved in this method. The time-domain analysis
stochastic system identification is proposed to extract simultaneously all FDs from
two degree of freedom systems. Finally, the results under different condition were
discussed and concluded.
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1 Introduction

The wind in the atmospheric boundary layer is always turbulent. Therefore, any
research of wind-induced vibration problems must consider this issue. Not many
researches have focused clearly on the effects of turbulence on aeroelastic forces.
Scanlan (1978) [1] is the pioneer who used a trussed deck section model and then
concluded that flutter derivatives had an insignificant difference from smooth and
turbulent flows. However, Huston (1986) conducted a test on a model of the Golden
Gate Bridge deck section, and the results showed a significant discrepancy in flutter
derivatives between smooth and turbulence flows [2]. Sarkar et al. (1994) [3]
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conducted a streamlined steel box girder section model test under both smooth and
turbulence flows and applied robust system identification method, Modified Ibra-
him Time Domain (MITD) [4]. Their study showed two valuable conclusions:
(1) The turbulence flow does not appreciably affect self-excited forces via the FDs,
and (2) the MITD method is based on the assumption that there is no external
excitation of the system. For a section model immersed in turbulent flow, the
buffeting forces and these responses are considered external forces, and hence free
vibration condition is conflicted theoretically. The MITD method treats the
resulting forced response as though additional noise is presented in the signals. This
made the identification flutter derivatives more difficult and most likely reduced the
accuracy.

For a study on FDs, the free vibration technique of sectional model is used, and
system identifications (SID) technique to extract FDs is widely applied [3–5].
Various SID techniques were developed by many authors: the Extended Kalman
Filter Algorithm, Modified Ibrahim Time-Domain method, Unifying Least-squares
method, and Iterative Least-Squares method. In these systems, the buffeting force
and their response are considered as external noise, so this causes more difficulties
at high wind velocity such as noise increase due to turbulence.

Kirkegaard and Andersen [6] compared three state-space systems: stochastic
subspace identification (SSI), stochastic realization estimator matrix block Hankel
(MBH), and prediction error method (PEM). The results showed that the SSI gave
good results in terms of estimated modal parameters and mode shapes. The MBH
was found to give poor estimates of the damping ratios and the mode shapes
compared with the other two techniques. In addition, the SSI was approximately ten
times faster than the PEM.

This study is to clarify the effects of oncoming turbulence on self-excited force
of a suspended long-span bridge deck. The more challenging is the application of a
stochastic system identification method to identify flutter derivatives from free
decay response for the section model which is obtained by an experimental wind
tunnel test for a truss deck section. The output only time-domain analysis stochastic
system identification, also known as data driven stochastic system (SSI-data)
methods is proposed to extract simultaneously all flutter derivatives (FDs) from two
degrees of freedom system (DOF).

2 Wind Tunnel Test

A wind tunnel test was conducted in a closed-circuit wind tunnel of Yokohama
National University. The investigated profile is trussed deck section (Fig. 1). Since
the truss deck with closed open grating exhibits torsional flutter at a relatively low
wind speed, FDs (particularly A2

*) identified can be validated by a flutter onset wind
speed. The width and depth of the section model are 363 mm and 162.5 mm,
respectively. The unit mass is 8.095 kg/m, and moment of inertia is 0.2281 kg m2/
m. The vertical frequency and damping ratio are 1.869 Hz and 0.0051, respectively.
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The torsional frequency and damping ratio are 3.296 Hz and 0.00419, respectively.
The tests have been carried out in both smooth and different turbulent flows. The
turbulent flows used in this study are generated with biplane wooden grids. The
turbulent properties are controlled by changing the distances to the model. The flow
conditions and turbulence properties are shown in Table 1.

3 Identification of Flutter Derivatives

3.1 Stochastic Discrete-Time State-Space System

Considering a 2 DOF section model of bridge deck in turbulent flow, equation of
motion is written by

m½h
..
+ 2ξhωh h

.
+ω2

hh�= Lse + Lb

I½α.. + 2ξαωα α
.
+ω2

αα�=Mse +Mb

ð1Þ

where h and α are the vertical and torsional displacement; m and I are mass and
mass moment of inertia per unit length, respectively; ωh = 2πfh and ωa = 2πfa are
circular frequencies of heaving and pitching mode; ξh and ξa are damping ratio to
critical; Lse and Mse are the aerodynamic self-excited lift and moment, respectively,
given by Simiu and Scanlan [7]

Fig. 1 Truss deck section model

Table 1 Turbulence
intensity and scale

Iu (%) Iw (%) Lu (cm) Lw (cm)

Case 1 6.2 4.6 11.3 9.1
Case 2 9.1 6.9 9.0 8.7
Case 3 15.6 13.2 6.8 6.4
I turbulence intensity, L turbulence integral length scales with
horizontal u and vertical direction w
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where ρ is the air density; U is the mean wind velocity; B is the width of bridge
deck; Ki = ωiB/U the reduced frequency (i = h, α); Hi

* and Ai
* (i = 1, 2, 3, 4) are

the flutter derivatives. Lb andMb (factorized into matrix B2 and input vector u(t)) are
the buffeting forces in the vertical and torsional directions, respectively. By sub-
stituting Lse, Mse, Lb, and Mb into Eq. (1) and moving the aerodynamic damping
and stiffness terms to the left-hand side, Eq. (1) can be transformed into a first-order
state equation by Eq. (3) [8]

x ̇ðtÞ= 0 I
− M½ �− 1 Ke½ � − M½ �− 1 Ce½ �

� �
4x4

xðtÞ+ 0
M½ �− 1B2

� �
uðtÞ ð3Þ

where x(t) is state vector; [M] is mass matrix; [Ce] is gross damping matrix
including the structural damping and aerodynamic damping; [Ke] is gross stiffness
matrix including the structural stiffness and aerodynamic stiffness.

In the modal analysis, sometimes the input is unknown and measurements are
mostly sampled at discrete-time. On the other hand, it is impossible to measure all
DOFs, and measurements always have disturbance effects. For all these reasons, the
continuous deterministic system will be converted to suitable form, discrete-time
stochastic state-space model, as follows:

xk+1 =Axk +wk

yk =Cxk + vk
ð4Þ

where xk = x(kΔt) is the discrete-time state vector containing the discrete sample
displacement and velocity; wk is the process noise; vk is the measurement noise due
to sensor inaccuracy. Assuming wk and vk are zero mean and {xk}, {wk}, and {vk}
are mutually independent, the output covariance R = E[yk+i yk

T] for any arbitrary
time lags iΔt can be considered as impulse response (Eq. (5)) of the deterministic
linear time-invariance system A, C, and G, where G = E[xk+1 yk

T] is the next
state-output covariance matrix.

Ri =CAi− 1G ð5Þ

894 L. Hoang-Trong et al.



3.2 Stochastic System Identification (SSI)

Data-driven stochastic subspace identification (SSI-data) method [9] is used in this
study. It works directly with time series of experimental data without the need to
convert output data to correlation, covariance, or spectra. The main step of SSI-data
is a projection of the row space of the future outputs into the row of past outputs.
The orthogonal projection Pi is defined as follows:

Pi = Yf ̸Yp = Yf YpðYpYT
p Þ− 1Yp ð6Þ

where the matrix Yf and Yp are the under half part and upper part half of a block
Hankel matrix H as below.

H =

y0 y1 ⋯ yj− 1

y1 y2 ⋯ yj
⋯ ⋯ ⋯
yi− 1 yi ⋯ yi+ j− 2

yi yi+1 ⋯ yi+ j− 1

yi+1 yi+2 ⋯ yi+ j

⋯ ⋯ ⋯
y2i− 1 y2i ⋯ y2i+ j− 2

2
66666666664

3
77777777775
2ixj

=
Y0ji− 1

Yij2i− 1

� �
=

Yp
Yf

� �
↕li
↕li

ð7Þ

where y = (y0, y1, y2, y2… yn) ∈Rlxn is the output measurement data obtained
from l sensors (in this study l = 2 for heaving and torsion modes), 2i is the number
of block rows, and j is the number of columns.

The main theorem of stochastic subspace identification states that the projection
Pi can be factorized as the product of observability matrix Oi and the Kalman filter
state sequence Xî. The observability matrix Oi and the Kalman filter sequence X ̂i are
obtained by applying SVD to the projection matrix Pi. The Kalman state sequences
Xî, X ̂i+1 are calculated using only output data. The system matrices can now be
recovered from overdetermined set of linear equations and obtained by extending
Eq. (4)

X
⌢

i+1

Yiji

 !
=

A
C

� �
X
⌢

i

� �
+

ρw
ρv

� �
ð8Þ

where Yi/i is a Hankel matrix with only one block row. Since the Kalman state
sequence and the outputs are known and the residuals (ρwT ρvT)T are uncorrelated
with Xî, the set of equation can be solved for A and C in the least-squares, where (.)u

is pseudo-invert of a matrix
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 !
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� 	† ð9Þ

3.3 Identification of Flutter Derivatives

The modal parameters of system can be obtained by solving the eigenvalue problem
state matrix A as

A=ΨΛΨ− 1, Φ=CΨ ð10Þ

where Ψ is the complex eigenvector; Λ the complex eigenvalue is the diagonal
matrix; Φ the mode shape matrix. When the complex modal parameters are known,
the gross damping Ce and gross stiffness Ke in Eq. (3) are determined by following:

Ke Ce½ �= −M ΦΛ2 Φ*ðΛ*Þ2
h i Φ Φ*

ΦΛ Φ*Λ*

� �− 1

and C
e
=M − 1Ce; Ke =M − 1Ke

C=M − 1C0; K =M − 1K0



ð11Þ

where C0 and K0 are the mechanical damping and stiffness matrix of the system
under no-wind condition.

Thus, the flutter derivatives of 2 DOF can be defined as follows:

H*
1ðKhÞ= −

2m
ρB2ωh

ðCe
11 −C11Þ, H*

2ðKαÞ= −
2m

ρB3ωα
ðCe

12 −C12Þ

H*
3ðKαÞ= −

2m
ρB3ω2

α

ðKe
12 −K12Þ, H*

4ðKhÞ= −
2m

ρB3ω2
h
ðKe

11 −K11Þ

A*
1ðKhÞ= −

2I
ρB3ωh

ðCe
21 −C21Þ, A*

2ðKαÞ= −
2I

ρB4ωα
ðCe

22 −C22Þ

A*
3ðKαÞ= −

2I
ρB4ω2

α

ðKe
22 −K22Þ, A*

4ðKhÞ= −
2I

ρB4ω2
h
ðKe

21 −K21Þ

ð12Þ

4 Flutter Derivatives

The decay responses are acquired at a sampling frequency 100 Hz, and these
samples are set to zero before operating with MATLAB (Fig. 2).

The actual implementation of SSI-data consists of projecting (Pi) the row space
of the under part outputs (Yf) into the row space of the upper part outputs (Yp) by
applying robust numerical techniques QR factorization Eq. (6) and shifted pro-
jecting matrix Pi-1, computing SVD of Pi, truncating the SVD into the model order.

896 L. Hoang-Trong et al.



The Kalman filter state sequence X ̂i is calculated by Pi then the SVD is found out.
Continously, the state matrix A and C is obtained by least-square solution Eq. (9).
The system order n can be determined from the number nonzero singular values of
projecting matrix. In practice, affect by noise thus singular values that are all
different from zero. Therefore, it is suggested to look at the “gap” between two
successive singular values. The order will be selected by a maximum number of
singular values at “gap” occur. Finally, the flutter derivatives will be obtained by
comparing the gross damping and gross stiffness with mechanical damping and
mechanical stiffness Eq. (12).

4.1 The Effects of Turbulence on Flutter Derivatives

In order to clarify the effects of oncoming flow turbulence on FDs, the SSI-data
method is applied to extract FDs from free decay response with different turbulence
intensity. Figure 3 shows the damping ratio of heaving and torsional mode versus
reduced wind speed (Vr). Compared with smooth flow, the damping ratio of
heaving mode increases more slowly, at certain reduced velocity; torsional damping
ratio decreases when turbulence intensity increases.

Figures 4 and 5 show the FDs under smooth and turbulent flows with the dif-
ferent turbulence intensity versus reduced wind speed. H*

1 , H
*
4 , A

*
1, A*

4 associated
with vertical oscillation are identified using the vertical frequency, and

Fig. 3 Damping ratio of heaving (left) and torsional (right) mode of the bridge section model
under smooth and turbulence flows (solid curves are fitted polynomial)

Fig. 2 Free decay response (V = 2.91 m/s) of the bridge deck section model (h-vertical; α-
torsional)
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Fig. 4 FDs (Hi) of the bridge section model under smooth and turbulent flows by free decay
response (solid curves are fitted polynomial of smooth case)

Fig. 5 FDs (Ai) of the bridge section model under smooth and turbulent flows by free decay
response (solid curve is fitted polynomial of smooth case)
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H*
2 , H

*
3 , A

*
2, A

*
3 associated with torsional oscillation are calculated using torsional

frequency. The torsional damping term A2
* plays an important role in torsional

flutter instability since its positive/negative value corresponds to the aerodynamic
instability/stability of torsional fluter. On the other hand, the coupled term H3

* and
A1
* together with the aerodynamically uncoupled term A2

* has significant role on
heaving-torsional 2 DOF-coupled flutter instability.

From Figs. 4 and 5, it can be found that in smooth flow, the FDH1
* increases faster

than that extracted from turbulent flows. This means that damping ratio of heaving
mode under smooth flow is higher compared with that from turbulent flow. Turbu-
lence has a very small effect on vertical and torsional frequency terms H4

* and A3
*.

In this experiment, the onset flutter is defined zero cross of reduced velocity axis
with the A2

*. Under smooth flow, the positive value A2
* at reduced wind speed

(Vr = 5.2) coincides with the negative total torsional damping. The significant
effects of turbulence flows on flutter derivatives are also illustrated particularly for
aerodynamic torsional damping term A2

*, the positive value correspond to the Vr

around 6.5 to 7.8 under Iu = 6.2% and Iu = 9.1%, respectively, whereas in case of
Iu = 15.6%, flutter does not occur up to Vr = 8. On the other hand, the effects of
different turbulent intensities on FDs are fairly modest. Slight difference can be seen
that A2

* tends to be lower in a high reduced velocity range as turbulence intensity
increases. The influence of turbulence on FDs will depend on the section. Sarkar
(1994) [4] found small effect for a streamlined section, while tests on a truss section
showed appreciable effect which is shown clearly by torsional damping term A2*.

The off-diagonal terms H2*, H3*, A1*, and A4* are fluctuated around zero value,
which means that in this experiment, the coupled vibration does not appear at small
wind velocity.

4.2 Flutter Critical Velocity

In order to confirm results of identified FDs under free decay responses, the flutter
critical velocity will be obtained from an equation of motion of a 2DOF system [10]

½M�fu ̈g+ ½C�fu ̇g+ ½K�fug= F½ �fu ̈g ð13Þ

where

½M�= m 0

0 I

� �
½C�= 2mξhωh 0

0 2Iξαωα

� �
½K�= mω2

h 0

0 Iω2
α

" #

½F�= Lh Lα
Mh Mα

� �
fug=

h

α

( )
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For stability check, self-excited force is only considered, and Lz, Lθ, Mz, and Mθ
are self-excited force components defined by

Lh = − πρB2ðLhR + iLhIÞ, Lα = − πρB2ðLαR + iLαIÞ
Mh = − πρB4ðMhR + iMhIÞ, Mα = − πρB4ðMαR + iMαIÞ

ð14Þ

where LhR, LhI, LαR, LαI, MhR, MhI, MαR, and MαI are self-excited force coefficients
(flutter derivatives) those can be compared with those by Scanlan’s format as
follows:

LhR =H*
4 ̸2π, LhI =H*

1 ̸2π, LαR =H*
3 ̸2π, Lα I =H*

2 ̸2π

MhR =A*
4 ̸2π, MhI =A*

1 ̸2π, MαR =A*
3 ̸2π, Mα I =A*

2 ̸2π
ð15Þ

Flutter derivatives of truss bridge deck section given in this study are approxi-
mated polynomials of the results from Figs. 4 and 5.

Assuming sinusoidal motion fug= fu0g expðiωtÞ and since structural damping
of a long-span bridge can be negligibly small, the damping matrix in Eq. (13) can
be dropped. Then, the aerodynamically influenced equation of motion can be
written by

½K�− 1 M½ �− F½ �ð Þfu ̈g= 1
ω2 fu ̈g ð16Þ

Solving Eq. (16) as an eigenvalue (λ) problem gives the modal frequency and
modal damping ratio as Eq. (17).

ωi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðλiÞ2 + ImðλiÞ2

q
ζi =ReðλiÞ ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðλiÞ2 + ImðλiÞ2

q ð17Þ

where λ is an eigenvalue, Re(λ) and Im(λ) are real and image parts of eigenvalue,
respectively.

The stability condition of the system is estimated based on modal damping ratio
(or logarithmic decrement). Figure 6 shows the change of aerodynamic damping of
torsional mode. The flutter critical wind speed (Ucr) is defined by the cross point of
torsional aerodynamic logarithmic decrement and equivalent torsional structural
logarithmic decrement (δ = −0.0263). The flutter critical velocity increases with
increase of turbulence intensity (Fig. 6). In the case of smooth flow the Ucr = 5.7.
And Ucr = 7.2, Ucr = 7.7 and Ucr = 8.2 correspond to Iu = 6.2%, Iu = 9.1% and
Iu = 15.6%, respectively.
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5 Conclusions

This study has investigated the effects of turbulence on flutter derivatives of the
truss bridge deck section by using wind tunnel test and output only state-space
stochastic system identification technique. Conclusions from this study are sum-
marized as follows:

• SSI-data shows good results because of an advantage of the method considered
buffeting force and its response as inputs instead of noise

• Turbulent flow significantly affects self-excited force via FDs of the truss bridge
deck section. A2

* became positive at Vr = 5.2 in the smooth flow and delayed to
Vr = 6.5–7.8 in the turbulent flows of Iu = 6.2% and 9.1%, respectively; and in
case of Iu = 15.6%, positive value did not appear.

• Turbulence induces buffeting response but increases flutter critical velocity.
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